
Postprint

On Separation of Concurrency and Conflicts
in Acyclic Process Models

Felix Elliger, Artem Polyvyanyy, and Mathias Weske
Hasso Plattner Institute at the University of Potsdam, Germany

Felix.Elliger@student.hpi.uni-potsdam.de

(Artem.Polyvyanyy,Mathias.Weske)@hpi.uni-potsdam.de

Abstract: Recently, a new approach for structuring acyclic process models
has been introduced. The algorithm is based on a transformation between
the Refined Process Structure Tree (RPST) of a control flow graph and the
Modular Decomposition Tree (MDT) of ordering relations. In this paper,
an extension of the algorithm is presented that allows to partially structure
process models in the case when a process model cannot be structured com-
pletely. We distinguish four different types of unstructuredness of process
models and show that only two are possible in practice. For one of these two
types of unstructuredness an algorithm is proposed that returns the maxi-
mally structured representation of a process model.

1 Introduction

The Business Process Modeling Notation (BPMN) offers a lot of concepts to model
a business process. In general, for decision points and the introduction of several
concurrent tasks the use of gateway nodes is suggested. A gateway in BPMN
is either a split or a join. In the former case it has multiple outgoing edges,
whereas in the latter it has multiple incoming edges. Each gateway has a type
that defines a respective split or join behavior. However, abusive or unexperienced
usage of gateway constructs may lead to complex, and even incorrect models. For
a better and more intuitive understanding of process models it is preferable to have
them obey to certain structures. Therefore, [KtHB00] defines the notion of (well)-
structured workflows. In such workflows every split node has a corresponding join
node of the same type, such that they form a single-entry-single-exit (SESE) region,
also called a block. If a process model is not well-structured, we call it unstructured.

As outlined in [PGD10], transforming an unstructured process model into a behav-
iorally equivalent structured one is appealing from various perspectives. In addition
to the motivation in [PGD10], Mendling et al. [MRvdA10] assess structured mod-
eling as the most important guideline for process models. A pleasant side effect,
concerning the understandability of a process model, is the reduction of routing
paths, which is another guideline shown in [MRvdA10].

Figure 1 shows an example transformation. Figure 1a depicts the original process

mailto:Felix.Elliger@hpi.uni-potsdam.de
mailto:Artem.Polyvyanyy@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de

B

A C

D

RP

(a)

B

A C

D

B1 B2P

(b)

Figure 1: (a) An unstructured process model, and (b) its well-structured representation

model. Obviously, this model is unstructured. Firstly, the initial split and the final
join have different types. Furthermore, the branches have connections between
them which does not fit the defintion of well-structuredness. Figure 1b shows a
well-structured process model whose behavior is equivalent to the behavior of the
process model in Figure 1a, where equivalent implies that all concurrent activities
of one process are also concurrent in the other one.

The algorithm for structuring process models, which is presented in [PGD10], has
a set of limitations. The limitations include the restriction to a subset of BPMN
elements that can be used and the absence of loops. Furthermore, the algorithm
does not return a result if not the whole process model can be well-structured. This
absence of a result is probably a crucial limitation, since there are process models
that cannot be completely well-structured, but still contain some parts which can
be replaced by an equivalent well-structured representation. An example for this
type of process models is shown in Figure 2.

In this paper, an extension of the algorithm in [PGD10] is described that is capable
of creating a valid result, even in the case of such inherently unstructured models.
This result is the maximally structured representation, i.e., all parts of the model
that can be structured, are represented as blocks. However, the extension does
not cover all unstructured process models. We distinguish between four types of
unstructured process models and show that only two of them have to be considered
in practice. For one of these two an algorithm is presented that allows for the
maximally structured representation of the process model.

The remainder of the paper is structured as follows. Section 2 introduces the
algorithm of [PGD10] and describes the required preliminaries. In Section 3, we
classify unstructured process models and describe the extension of the algorithm.
The paper closes with conclusion.

A

E

D

B

C

Figure 2: An inherently unstructured process model

2 Preliminaries

This section presents preliminaries that are required for the understanding of the
algorithm in [PGD10] and its extension: First, Section 2.1 formally defines the
notion of a process model and presents the Refined Process Structure Tree—a
technique for parsing a process model into a hierarchy of SESE regions. Afterwards,
Section 2.2 discusses Petri nets and their unfoldings. Finally, Section 2.3 discusses
the notion of ordering relations and presents the Modular Decomposition Tree.

2.1 Process Models and the Refined Process Structure Tree

As already mentioned, the algorithm in [PGD10] imposes certain restrictions on the
process model structure and the allowed modeling constructs. These restrictions
are not lifted in this paper, i.e., we only consider acyclic sound process models that
solely consist of activities, AND-gateways, and XOR-gateways. Following these
restrictions, we define a process model as follows.

Definition 2.1 (Process model)
A process model is a tuple W = (A,G+, G×, C,A, µ), where A is a non-empty
set of activities, G+ is a set of AND-gateways, G× is a set of XOR-gateways.
G = G+ ∪ G× is the set of all gateways of the process model. Z = A∪G is the set
of all nodes of the process model. C ⊆ Z × Z defines the control flow relation. A
is a set of names and µ : A→ A is a function that assigns names to the activities.

Process models, as representatives of directed graphs, can be decomposed into
SESE regions. In [VVK08, VVK09, PVV10], the Refined Process Structure Tree
(RPST) is proposed as a unique hierarchical decomposition of a process model into
SESE regions, where a region is defined by a subset of the control flow relation.
The important fact besides the uniqueness of the decomposition is that identified
regions do not overlap, i.e., given two SESE regions derived by the RPST either
one region is completely contained in another region or these regions are disjoint.

According to its inner structure, each SESE region has a type. A trivial (T) region
consists of a single control flow edge. A polygon (P) region refers to a sequence of
regions. A bond (B) is a set of regions that share two common nodes, one as entry
and one as exit. Typical examples of bonds are well-structured blocks in a process
model with a split and a corresponding join gateways as common nodes. All other
regions are referred to as rigids (R). Rigid regions represent the unstructured parts
of a process model. Therefore, if we talk about unstructured process models, or
unstructured fragments of models, we talk about rigid regions of a process model.

In Figure 1a and Figure 1b, SESE regions are visualized using dashed rectangles
with rounded corners. The letters in the top left corner indicate the types of the
regions, e.g., P is a polygon, B denotes a bond, and R stands for a rigid. Note that
trivial regions and polygon regions composed of two trivial regions are not shown
in the figures.

2.2 Petri Nets and Unfoldings

The execution semantics of process models is defined by mapping process models
to formal process languages. In [PGD10] and for our purposes, we map process
models to Petri nets. Such a translation is described in detail by Dijkman et al.
in [DDO07] or can be sufficiently looked up in [PGD10].

Definition 2.2 (Petri net)
A Petri net, or a net, is a tuple N = (P, T, F) with P and T as finite disjoint sets
of places and transitions, and F ⊆ (P × T) ∪ (T × P) as the flow relation.

For a node n ∈ P ∪ T , we define the set of inputs •n = {x | (x, n) ∈ F} and the
set of outputs n• = {x | (n, x) ∈ F}. If n has multiple inputs (| • n| > 1), we call
n a join. If n has multiple outputs (|n • | > 1), we call n a split. If n is a place
(transition) we say that n is an XOR- (AND-) split/join. With F+ we denote the
transitive closure of the flow relation.

Definition 2.3 (Labeled net)
A labeled net is a tuple N = (P, T, F, T , λ), where (P, T, F) is a Petri net, T is a set
of labels, with τ ∈ T , and λ : T → T is function that assigns labels to transitions.

If λ(t) = τ , t is a τ -transition; otherwise, t is observable.

By translating the process model in Figure 1a, one can get the labeled net depicted
in Figure 3a. The τ -transitions had to be added to receive the correct split and join
behavior. Figure 3b shows the unfolding of the net in Figure 3a. Unfoldings and the
respective algorithms are described in detail by Esparza and Heljanko in [EH08].
Loosely speaking, the unfolding is a more “simple” representation of the original
net. Every XOR-split in the original net creates new branches in the unfolding
that are never joined. This may lead to duplication of transitions and places, since
everything that follows after a corresponding XOR-join in the original net is added
to each created branch in the unfolding. As a result, the unfolding may have a
high degree of redundancy, but its structural complexity is reduced compared to
the original model. For details we refer the reader to [EH08].

Unfoldings can be large in size, possibly infinite, as compared to their originative
nets. To make the unfolding feasible for application in practice, there exists the
concept of the complete prefix unfolding, i.e., the minimum part of the unfolding
that is capable of representing all valid markings of the original net. One needs
to make a cut in the unfolding if a marking is reached the second time. The
transition that leads to this marking a second time is called a cutoff transition. To
illustrate this idea, Figure 3b shows the complete prefix unfolding of the Petri net
in Figure 3a. While unfolding the net, the initial XOR-split opens two branches.
Later in the unfolding, both these branches reach the AND-splits. This results in
the labeled places p, q, s, and t. As one can see p and s refer to the same place a
in the original net; q and t refer to b, respectively. As either p and s, or q and t

A C

B D

a

b

(a)

A

C

D

B

p

q

s

t

(b)

Figure 3: (a) A Petri net for the model in Figure 1a, and (b) its complete prefix unfolding

are marked, they both represent the same marking of a and b in the original net.
Therefore, one of the two τ -transitions is a cutoff transition. Since we make a cut,
it suffices to add the following transitions C and D to only one branch. This results
in the complete prefix unfolding that is shown in Figure 3b.

2.3 Ordering Relations and the Modular Decomposition Tree

Ordering relations characterize the behavioral dependencies between the activities
of a process model. Each pair of activities is either in precedence, conflict, or
concurrency relation. These relations are defined as follows.

Definition 2.4 (Ordering relations)
Let N = (P, T, F) be a complete prefix unfolding, let x, y ∈ T be transitions of N .

◦ x precedes y (x y), iff (x, y) ∈ F+.
◦ x and y are in conflict (x#y), iff
∃ t1, t2 ∈ T, t1 6= t2 : (•t1 ∩ •t2 6= ∅) ∧ (t1 x) ∧ (t2 y).

◦ x and y are concurrent (x ‖ y), iff they are neither in precedence, nor in conflict.

The set RN = { N ,#N , ‖N} forms the ordering relations of N . As one can see
from Definition 2.4, an activity precedes another activity, if and only if there exists
a path of edges from one activity to the other. Two activities are in conflict, if one
can find a place that is input to two different transitions each of them leading to
one of the two activities. A pair of activities is considered concurrent in all other
cases. For instance in Figure 3b, one can identify that transitions A and B are in
conflict, since the initial place is input to both transitions. Transition A precedes
transitions C and D, since we know that places s and t are outputs of a cutoff
transition, it also follows that B C and B D. C and D are concurrent.
For details on the algorithm for computing ordering relations in a complete prefix
unfolding, please refer to [PGD10].

Definition 2.5 (Ordering relations graph)
Let N = (P, T, F, T , λ) be a labeled net and let U be a complete prefix unfolding

of N . The ordering relations graph of N is a triple Gλ = (V,E,L), where V is the
set of observable transitions of N , L = {ε, ,#, ‖} is the set of labels, or colors,

A

D

C

B

(a)

D

C2

CA

B

C1 L

(b)

D

C
A

B
E

(c)

C

P

D

C
A

B
E

(d)

Figure 4: (a) The ordering relations graph of the complete prefix unfolding in Figure 3b,
and (b) its modular decomposition tree; (c) the ordering relations of the complete prefix
unfolding of a process model in Figure 2, and (d) its modular decomposition tree

and E = V × V → L is an edge labeling function, such that E(x, y) = ⊕, with
x, y ∈ V and ⊕ ∈ L\ε, if x⊕N y; otherwise E(x, y) = ε.

From Definition 2.4 and Definition 2.5 it follows that between any pair of nodes in
Gλ there is an edge whose color is not ε. For that reason, we say that E(x, y) = ε
implies that there is no edge in the graph. Nevertheless, Gλ is connected, i.e., every
pair of nodes is connected by at least one edge. Furthermore, we can identify, that
‖ and # are symmetric relations, whereas and ε are asymmetric relations. In
addition, E(x, y) = implies E(y, x) = ε.

Figure 4a depicts the ordering relations graph of the process model in Figure 1a
with its corresponding complete prefix unfolding in Figure 3b. The solid unidi-
rectional arcs represent the precedence relation, dashed bidirectional arcs denote
exclusiveness, and dotted bidirectional arcs represent concurrency.

An ordering relations graph is in fact a 2-structure, cf. [EGMS94]. In the following,
we apply the theory of 2-structures to ordering relations graphs. Let G = (V,E,L)
be an ordering relations graph. A clan of G is a subset C ⊆ V of nodes of G, such
that ∀x, y ∈ C ∀z ∈ V \C : E(x, z) = E(y, z) ∧ E(z, x) = E(y, z), i.e., all nodes of
the clan have uniform relations to all other nodes outside the clan. Obviously, V ,
∅, and all V ′ ⊆ V with |V ′| = 1 are clans. Such clans are the trivial clans of G. A
clan C of G is a prime clan, if for all other clans C ′ of G, either C ⊆ C ′, C ′ ⊆ C,
or C ∩ C ′ = ∅.

Definition 2.6 (Primitive, Complete, Linear)
Let C be a clan of an ordering relations graph G = (V,E,L).

◦ C is complete (C), iff ∃ ⊕ ∈ {#, ‖} ∀ x, y ∈ C, x 6= y : E(x, y) = ⊕, i.e., all nodes
in C are connected by edges of the same color. If ⊕ = #, then C is XOR-complete;
otherwise C is AND-complete.

◦ C is linear (L), iff there exists a linear order (x1, . . . , x|C|) of elements of C, such
that E(xi, xj) = if i < j and E(xi, xj) = ε otherwise.

◦ C is primitive (P), iff C is neither complete nor linear.

Note that a clan with less than three nodes cannot be primitive. Since prime clans
are either contained within other prime clans or are disjoint, the set of all prime
clans of an ordering relations graph forms a hierarchical decomposition.

Definition 2.7 (Modular Decomposition Tree (MDT))
The Modular Decomposition Tree (MDT) of an ordering relations graph G, denoted
by MDT (G), is the containment hierarchy of all prime clans of G.

Figure 4b shows the MDT of the ordering relations graph in Figure 4a. The MDT
consists of two complete clans C1 and C2, where C1 is XOR-complete and C2 is
AND-complete. C1 and C2 are contained in the linear clan L, which is also the
root of the modular decomposition tree.

In [PGD10], the authors discovered relation between prime clans of the MDT and
SESE regions of the RPST. Let C be a prime clan of the MDT and D its corre-
sponding SESE region in the RPST.

◦ If C is linear, then there exists D that is trivial or polygon.
◦ If C is AND- (XOR-)complete, then there exists D that is an AND (XOR) bond.

Algorithm 1 Restructure an Acyclic Process Model, cf. [PGD10]

Input: An acyclic process model m
n := process model to petri net(m)
u := compute complete prefix unfolding(n)
org := get ordering relations graph(u)
mdt := compute modular decomposition(org)
// traverse the MDT and output the RPST, if possible

for all prime clan c in mdt in postorder do
if c is primitive then

FAIL
else

generate structured sese region(c)
end if

end for
return the RPST

Using these relations, one can employ the modular decomposition tree to synthesize
a well-structured process model. One needs to perform a stepwise construction of
the RPST, where each prime clan of the MDT results in the corresponding SESE
region in the RPST. Following this approach for the MDT in Figure 4b, we receive
the well-structured process model in Figure 1b. The complete clans C1 and C2
are replaced by their corresponding AND and XOR bonds containing the activities
belonging to the trivial clans that are contained in C1 and C2. The polygon P
represents the linear clan L. The start and end event are added for convenience.

The complete algorithm for structuring a process model, as described in [PGD10],
is depicted in Algorithm 1. Algorithm 1 returns a result only if a process model
can be well-structured completely and fails otherwise, even if the original process
model can be partially structured.

3 Extension of the Structuring Algorithm

In this section, we aim at increase in the coverage of Algorithm 1, i.e., we allow
partial structuring of a model when it has no well-structured representation. To in-
crease the coverage, an extension of the algorithm must be able to handle primitive
clans. As a running example in this section, we refer to the process model depicted
in Figure 2. The RPST of this process model contains a rigid region. Computing
the ordering relations graph of this rigid region results in the graph shown in Fig-
ure 4c, whereas Figure 4d shows its MDT. If one would run Algorithm 1 with the
process model in Figure 2 as input, the algorithm will fail. Observe, however, that
the MDT of the ordering relations graph contains a complete clan C that can be
replaced by a bond in the RPST.

In the following, we provide an extension of Algorithm 1 that is able to transform
the MDTs as in Figure 4d into process models. The next section gives a classifica-
tion of primitive clans based on the colors of edges they contain. Furthermore, the
next section investigates whether all of the classified classes of primitive clans must
be considered when synthesizing process models. Afterwards, Section 3.2 shows an
extension of the algorithm for handling one class of primitive clans.

3.1 Classification of Primitivity

In this section, we examine primitive clans and classify them according to the colors
of edges they contain.

Let N = (P, T, F) be a complete prefix unfolding. For all x, y, z ∈ P ∪ T holds:

1. x y ∧ y z ⇒ x z, i.e., the precedence relation is transitive.
2. x # y ∧ y z ⇒ x # z, i.e., the conflict relation is inherited by the

precedence relation.

A primitive clan C is valid if it obeys these two properties; otherwise C is invalid.
For the transformation of a primitive clan into a process model we only consider
valid primitive clans, since the behavioral dependencies described by an invalid
primitive clan might be contradicting and, therefore, are unrealizable without the
introduction of additional variables or may lead to unsound process models.

Definition 3.1 (-, AND-, XOR-, Mixed-primitive)
Let C be a primitive clan.

1. C is a -primitive, or precede-primitive, iff
∀ x, y ∈ C, x 6= y : (E(x, y) = ∧ E(y, x) = ε) ∨ (E(x, y) = ε ∧ E(y, x) =),
i.e., between the nodes in C there are only precedence relations.

2. C is an AND-primitive, iff ∀ x, y ∈ C, x 6= y : (E(x, y) ∈ {‖, } ∨ E(y, x) ∈
{‖, }) ∧ E(x, y) 6= # ∧ E(y, x) 6= #, i.e., between the nodes in C there are
only precedence and concurrency relations.

3. C is a XOR-primitive, iff ∀ x, y ∈ C, x 6= y : (E(x, y) ∈ {#, } ∨ E(y, x) ∈
{#, }) ∧ E(x, y) 6= ‖ ∧ E(y, x) 6= ‖, i.e., between the nodes in C there are
only precedence and conflict relations.

4. C is a Mixed-primitive, iff it has edges of all colors.

We now check these classes for validity. As Proposition 3.1 suggests, there exist no
valid -primitives or XOR-prmitives.

Proposition 3.1 Let P be a primitive clan.

1. If P is a -primitive, then P is invalid.
2. If P is an XOR-primitive, then P is invalid.

In the following, we sketch ideas for the proof of Proposition 3.1.

1. Let P be valid. Then, it holds that ∀ x, y, z ∈ P : x y ∧ y z ⇒ x z.
Let succ(x) = {y | x, y ∈ P,E(x, y) = } denote the set of successors of
node x. Intuitively, since there are no other relations than precedence in the
corresponding unfolding, all transitions are located on one path connecting
them all in a sequence. Because of this sequential ordering it holds that
∀ x, y ∈ P, x 6= y : |succ(x)| 6= |succ(y)|. According to Definition 3.1 it
follows that P is linear, which contradicts the fact that P is primitive.

2. The basic case is a primitive P that contains three nodes. Again, we assume
that P is valid. We distinguish two cases.
Case 1: ∀ x, y ∈ P, x 6= y : E(x, y) = #, i.e., we solely find conflict relations.

As all edges are of the same color, this implies that P is XOR-complete
and, therefore, not primitive.

Case 2: ∃ x, y, z ∈ P, x 6= y, y 6= z, x 6= z, such that E(x, y) = # and
E(x, z) = , i.e., we observe both relations in P . From validity then
follows that E(y, z) = #. Obviously, the set {x, z} is a linear clan L. L
and the trivial clan {y} form a XOR-complete clan. Therefore, P is not
primitive. Thus, the proposition holds for the base case.

In each step we add a new node w to P . There are four cases:
Case 1: ∀ x ∈ P, x 6= w : E(x,w) = #, i.e., w is in conflict to all other

nodes in P . From the base step we know that P\{w} is not primitive.
Therefore, P is either linear or XOR-complete. Inserting w in conflict to
all other nodes is equivalent to adding a new trivial clan {w} to P . If P
was linear before, then the resulting clan P ′ is XOR-complete containing
the old linear P and the trivial {w}. If P was XOR-complete, we simply
add {w}, and P is still XOR-complete. Therefore, P is not primitive.

Case 2: ∀ x ∈ P, x 6= w : E(x,w) = . This implies that P and {w} are in a
linear order. Therefore, P ′ = P ∪ {w} is linear and not primitive.

Case 3: ∀ x ∈ P, x 6= w : E(x,w) = ε. This is analogous to Case 2.
Case 4: ∃ x, y, z ∈ P, x 6= y, y 6= w, x 6= w, z 6= x, such that E(x, y) = #,

E(x,w) = , and E(w, z) = #, i.e., w must fulfill relations of both
types. From validity it follows that ∀ u ∈ P : E(u, x) = #⇒ E(u,w) =
#, i.e., w is in conflict to everything x is in conflict with. Further-
more, from the transitivity of we know that ∀ v ∈ P : E(v, x) = ⇒
E(v, w) = . This is equivalent to adding the trivial clan {w} to the lin-
ear containing x, which itself is nested in a XOR-complete clan. There-
fore, the structure of P does not change and is still not primitive.

Hence, it suffices to investigate AND- and Mixed-primitives. The following section
provides an algorithm for synthesizing process models from AND-primitives.

3.2 Handling AND-Primitives

AND-primitives form a simple class of primitivity. An example of an AND-
primitive is shown in Figure 4d, which represents the modular decomposition tree
of our running example. The exclusiveness relation between C and D is not part
of the primitive, since it is “hidden” inside of a XOR-complete clan. Algorithm 2
depicts the essentials for synthesizing a process model from an AND-primitive. We
define the following auxiliary functions:

� new_node(type): Create a node of the given type.
� set_label(node, l): Set the label of a node.
� label(n): Get the label of node n.
� new_edge(t1, t2): Create an edge from t1 to t2.
� set_target(edge, node): Set the target node of an edge.
� set_source(edge, node): Set the source node of an edge.
� add(model, el): Add an element to a process model.

In the first step, the algorithm creates a task for each node of the primitive; this
includes potential completes and linear clans. At the second step, we add control
flows between the tasks, where the corresponding nodes in P are in precedence and
this precedence is not covered by any transitivity. Lines 17 and 18 in Algorithm 2
add an initial AND-split and a final AND-join as a start and end node of the
model. The last step adds further splits and joins where required, and connects
tasks with no incoming (outgoing) edges with the initial AND-split (the final AND-
join). Furthermore, tasks that correspond to completes or linear clans are replaced
by their respective structured representations, as computed by Algorithm 1.

Figure 5 illustrates the algorithm for our running example. Figure 5a represents
the result after steps 1 and 2, whereas Figure 5b shows the final result. As one
can see, task CD has been replaced by a XOR block containing the two activi-
ties, and AND-joins (-splits) have been added where a task had multiple incoming
(outgoing) control flow edges. In fact, Figure 5b depicts the maximally structured
representation for our example process model.

Summarizing the findings of this section, we observe that in the case of a clear sep-
aration of concurrency and conflict relations the algorithm returns the maximally
structured representation of a given process model.

A

C
D

B

E

(a)

A B

E
C

D
(b)

Figure 5: (a) Result after Step 1 and 2 of Algorithm 2, and (b) the final result for our
running example in Figure 2

Algorithm 2 Synthesis of a Process Model from an AND-primitive

Input: An AND-primitive P
Output: A process model m

m := an empty process model
// Step 1

5: for all node n ∈ P do
t := new node(Task); set label(label(n)); add(m, t);

end for

// Step 2

for all nodes n1, n2 ∈ P where E(n1, n2) = do
10: if ∃ x ∈ P : E(n1, x) = ∧ E(x, n2) = then

continue
end if
t1 := task with label label(n1)
t2 := task with label label(n2)

15: e := new edge(t1, t2); add(m, e);
end for

as0 := new node(ANDsplit); add(m, as0);
aj0 := new node(ANDjoin); add(m, aj0);

// Step 3

20: for all task t in m do
if t has multiple outgoing edges then

as := new node(ANDsplit)
for all outgoing edge e from t do

set source(e, as)
25: end for

e = new edge(t, as); add(m, as); add(m, e);
else if t has no outgoing edge then

e = new edge(as0, t); add(m, e);
end if

30: if t has multiple incoming edges then
aj := new node(ANDjoin)
for all incoming edge e to t do

set target(e, aj)
end for

35: e = new edge(aj, t); add(m, aj); add(m, e);
else if t has no outgoing edge then

e = new edge(t, aj0); add(m, e);
end if
if t corresponds to a complete or linear in P then

40: replace t with corresponding block or polygon
end if

end for
return m

4 Conclusion

In this paper, we have investigated primitive clans of the modular decomposition
tree to achieve maximally structured representations of inherently unstructured
acyclic sound process models. We have distinguished the primitive clans according
to the ordering relations contained in them. In the first step, we argued that not
all types of primitives are valid for synthesizing a process model. In the second
step, we presented Algorithm 2 to synthesize a process model for the case of AND-
primitives. This algorithm has been implemented and integrated into the existing
approach presented in [PGD10], to avoid failing for that type of primitivity. The
second valid primitive class, Mixed-primitives, requires further investigation due to
its high complexity. Furthermore, future work should focus on lifting the acyclic
restriction imposed on process models.

References

[DDO07] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Formal Semantics
and Analysis of BPMN Process Models using Petri Nets, 2007.

[EGMS94] Andrzej Ehrenfeucht, Harold N. Gabow, Ross M. McConnell, and Stephen J.
Sullivan. An O(n2) divide-and-conquer algorithm for the prime tree decompo-
sition of two-structures and modular decomposition of graphs. J. Algorithms,
16(2):283–294, 1994.

[EH08] Javier Esparza and Keijo Heljanko. Unfoldings – A Partial-Order Approach
to Model Checking. EATCS Monographs in Theoretical Computer Science.
Springer-Verlag, March 2008.

[KtHB00] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Christoph Bussler.
On Structured Workflow Modelling. In Proceedings of the 12th International
Conference on Advanced Information Systems Engineering (CAiSE), pages
431–445, London, UK, 2000. Springer-Verlag.

[MRvdA10] Jan Mendling, Hajo A. Reijers, and Wil M. P. van der Aalst. Seven process
modeling guidelines (7PMG). Information & Software Technology, 52(2):127–
136, 2010.

[PGD10] Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas. Structur-
ing Acyclic Process Models. In Proceedings of the 8th International Confer-
ence on Business Process Management (BPM), Hoboken, NJ, US, 2010.

[PVV10] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified Compu-
tation and Generalization of the Refined Process Structure Tree. In Proceed-
ings of the 7th International Workshop on Web Services and Formal Methods
(WS-FM), Hoboken, NJ, US, 2010.

[VVK08] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The Refined Process
Structure Tree. In Proceedings of the 6th International Conference on Busi-
ness Process Management (BPM), Berlin, Heidelberg, 2008. Springer-Verlag.

[VVK09] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The Refined Process
Structure Tree. Data Knowl. Eng., 68(9):793–818, 2009.

	Introduction
	Preliminaries
	Process Models and the Refined Process Structure Tree
	Petri Nets and Unfoldings
	Ordering Relations and the Modular Decomposition Tree

	Extension of the Structuring Algorithm
	Classification of Primitivity
	Handling AND-Primitives

	Conclusion

